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Abstract. We investigate the dominance of 0+ states as the lowest states in shell model calculations with
random two-body interactions in a single j-shell. We have found an explanation of the large probability of
the 0+ ground state.

PACS. 05.30.-d Quantum statistical mechanics – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems – 21.60.Cs Shell model – 24.60.Lz Chaos in nuclear systems

The spins of even-even nuclei are always 0+ without
any exception. This fact is believed to be a consequence
of the strong attractive short-range interaction. However,
Johnson, Bertsch and Dean discovered an extremely in-
teresting phenomenon [1]. This is the dominance of 0+

states as the lowest states in shell model calculations with
random two-body interactions. After this discovery, many
works have been accumulated to understand this fact [2–
10].

In this paper, we present our study of this problem
taking a simple system such as four particles in a single
j-shell. We assumed the Box-Muller method to produce
random Gaussian two-body interactions. In these calcu-
lations j runs from 7/2 to 31/2. We confirmed the domi-
nance of 0+ states as ground states. More precisely, for j
larger than 15/2, the probability for 0+ states to be the
ground states is confirmed to be always the largest one, as
shown in fig. 1. In fig. 2 the probability of the spin I to be
the ground state is shown for 5-particle systems with dif-
ferent j. The I = j states are very likely to be the ground
states.

In order to understand the reason why 0+ and I = j
states have large probabilities as the ground states, we
expand the expectation values of the Hamiltonian H in
terms of the two-body interaction strengths GJ as follows:

EI,v,β =
∑

J

αJ
I,v,βGJ ,

where I is the spin of a state, v its seniority and β its
additional quantum number. The coefficients α for j = 9/2
with four particles are shown in table 1. We find a good
correspondence between the probability of the state of spin
I to be the ground state and the value of α. If αJ

I is the
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Fig. 1. The IGS probability (large probability of finding I to
be the angular momentum of the ground state) for 4-particle
systems with different j.

largest coefficient among αJ
I′ , the probability is large. The

“pred” in table 1 means that the probability is calculated
by using the following formula:∫

dG0

∫
dG2 · · ·

∫
dG8

∫
dE0,0 · · ·

∫
E0,0

dE12,4

×δ

(
E0,0 −

∑
J

αJ
0,0GJ

)
· · · δ

(
E12,4 −

∑
J

αJ
12,4GJ

)

×ρ (G0) ρ (G2) ρ (G4) ρ (G6) ρ (G8) ,

where ρ (GJ) = 1√
2π

exp
[− 1

2G2
J

]
and EI,v is the energy

of the state with spin I and seniority v.
Until now we did not take into account mixtures

among states with the same I. The probabilities shown
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Fig. 2. The IGS probabilities for 5-particle systems with dif-
ferent j.

Table 1. The coefficients αJ
I,v,β for each angular momentum

state in the case of j = 9
2

and n = 4. Bold (italic) font is

used for the largest (smallest) αJ
I,v,β . The column “test” is

obtained by the running the two-body random interactions.
The last column, “pred”(prediction), is obtained by integrat-
ing over the distribution functions of the ensemble and using
the approximation EI,v,β =

∑
J

αJ
I,v,βGJ , refer to the text for

details. When a state cannot be uniquely labeled by its angu-
lar momentum, only total probability of IGS is presented in
the first one, and probabilities of other I-angular momentum
states to be the ground states are labeled using star symbols
in the column “test”.

I G0 G2 G4 G6 G8 test pred
(%) (%)

0 1.60 0.50 0.90 1.30 1.70 66.4 14.150
0 0.00 0.20 2.57 2.91 0.32 * 30.649
2 0.60 1.43 1.22 0.893 1.86 3.7 1.844
2 0.00 1.35 1.69 1.70 1.26 * 1.260
3 0.00 0.36 2.28 2.63 0.71 0 0.110
4 0.00 2.04 1.02 0.890 2.06 11.8 18.852
4 0.00 0.50 2.08 2.43 0.99 * 0.000
4 0.60 0.68 1.04 2.40 1.28 * 3.540
5 0.00 1.00 1.59 1.84 1.57 0 0.00
6 0.60 0.34 1.66 1.33 2.07 0 2.103
6 0.00 1.64 0.98 1.08 2.29 0 0.000
6 0.00 0.39 1.85 2.34 1.43 0 0.000
7 0.00 1.20 1.09 1.40 2.31 0 0.000
8 0.60 0.55 0.68 1.58 2.59 0.2 0.030
8 0.00 0.41 1.42 2.05 2.13 * 0.000
9 0.00 0.17 1.33 2.12 2.38 0 0.000
10 0.00 0.70 0.69 1.41 3.21 0 0.176
12 0.00 0.00 0.52 1.69 3.78 17.9 27.275

in the column “test” are obtained by taking into account
the mixing. We find that the probabilities shown as “test”
become larger than those shown as “pred”. This is quite
reasonable, because a 0+ state is pushed down by the mix-
ing.

We use here a way to avoid the effect of the mixing
in the space of states with the same spin I. The trace of
H is independent of the mixing. We calculate the proba-

Table 2. The IGS probability (up to the fifth largest cases)
and IGS average probability for j = 31/2 with four parti-
cles. The IGS average probabilities are calculated in terms of
the trace of the Hamiltonian H in each angular momentum
I. The SE is the standard deviation defined by 〈(EI,v,β)2 −
〈EI,v,β〉2〉1/2.

I IGS probability IGS average SE

(%) probability (%)

0 30.8 11.5 3.06
2 11.8 3.7 2.69
4 4.0 0.4 2.47
6 7.6 1.1 2.37

56 6.4 23.3 0.00

GJ < 0 GJ > 0
CJ GJ > 0 CJ GJ < 0

0 0

Fig. 3. The probability of ∆E.

bility for an average over the energies of EI,v,β to be the
lowest one. Here the average can be calculated by taking
the trace. The result is shown in table 2 for j = 31/2
with four particles. Now the largest probability to be the
ground state is found for the highest spin I = 56+. The
probability of the 0+ average energy to be the lowest one
comes next. However, we should be aware that there is
only one state for I = 56+. On the other hand, there are
five 0+ states. Some of them are pushed down far from
their average. Thus we can expect that the probability of
a 0+ state to be the ground state is larger than that of
the I = 56+ state. It is interesting to note that some of
the α’s for 0+ and I = 56+, take the largest values for a
specific interaction GJ .

We try to explain why a state has a large probability
to be the ground state when some αJ

I,v,β of this state are
the largest among αJ

I′,v′,β′ . Let us look at the difference
between EI′,v′,β′ and EI,v,β :

∆E = EI′,v′,β′ − EI,v,β = CJGJ − F ,

where CK = αK
I′,v′,β′ − αK

I,v,β and F =
∑

J ′ �=J

CJ ′GJ ′ . It

should be noticed that CJ is negative definite, and CJGJ

is either negative or positive definite depending on the
sign of GJ . When GJ ′ takes a random number produced
by the Gaussian distribution, F , too, takes a Gaussian dis-
tribution. Figure 3 explains why ∆E has a large probabil-
ity (shown by shadow) to be positive (namely for EI,v,β

to be the lowest energy) when GJ < 0. This is an ex-
planation of the question raised above. We have thus
found an explanation of the large probability of the 0+

ground state. The question why several αJ
0 take the largest
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values among the coefficients αJ
I (I �= 0) is currently stud-

ied by the randomness of two-body coefficients of frac-
tional parentage [11].
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